Browse content
Table of contents
Actions for selected chapters
- Full text access
- Book chapterNo access
Appendix A - Theoretical foundations
Pages 533-552 - Book chapterNo access
Appendix B - The WEKA workbench
Pages 553-571 - Book chapterNo access
References
Pages 573-600 - Book chapterNo access
Index
Pages 601-621
About the book
Description
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html.
It contains
- Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
- Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
- Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html.
It contains
- Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
- Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
- Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Key Features
- Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
- Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
- Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
- Includes open-access online courses that introduce practical applications of the material in the book
- Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
- Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
- Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
- Includes open-access online courses that introduce practical applications of the material in the book
Details
ISBN
978-0-12-804291-5
Language
English
Published
2017
Copyright
Copyright © 2017 Elsevier Inc. All rights reserved.
Imprint
Morgan Kaufmann